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Abstract—The paper deals with the application of the Governing Principle of Dissipative Processes
{GPDP} to the Bénard convection, that s, the motion arising from the thermal instability of a thin
horizontal layer of fluid when a steady temperature contrast is maintained across it. The linearized
equations of Bénard convection are derived with the help of the universal form of the governing principle.
The so-called dual field method developed on the basis of GPDP js used to get the solution of the problem
in ail the three representations of the principle, namely, in universal, force and flux respectively. It is found
that the results obtained by the actual variational principle, that is; by the universal form of the principle
differ by less than 25 per cent with those of exact values while flux representation gives the best approximate
results and the force representation is found to be the worst one.

NOMENCLATURE
a, 2 \J{al +ad), wave number;
Uy critical wave number;
&, specific value of the continuum referred to
unit mass;
A, B, variational parameters;
Lo specific heat at constant volume;
d, thickness of the Jayer;

& acceleration due to gravity;
gifx}), linearly independent functions;
G,  trial function for velocity;

T, thermodynamic current density;
T, heat current density;
k, thermal diffusivity;

Ly, phenomenological coefficients;

B, unit vector;

o hydrostatic pressure;

P, pressure tensor;

: 3 symmetrical part of pressure fensor;
R, Rayleigh number;

R,  critical Rayleigh number;

1, time;

T,  perturbed temperature fleld;

T*,  approximate temperature field;

¥, perturbed velocity field;

v*,  approximate velocity field;

Py, 1,03, velocity components i xy, xz and xa
directions respectively;

v}, v, 0%, approximate velocity componenis;

¥V, volume of the continuum;

X,  thermodynamic forees;

z, = x3/d, co-ordinate in dimensionless form,
Greek symbok
o coetficient of volume expansion;

aft), variational parameters;
B, temperature gradient;
A thermal conductivity;
i, coefficient of viscosity;
v, kinematic viscosity;

+Present address: Indian Ingtitute of Tropical Meteor-
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w, frequency of oscillations;

8, trial function for temperature field;
po,  density of the continuum;

0, surface of the system;

d  Kronecker symbol;

T state parameters;

¥,  approximate value of I;

a, entropy production;
¢, dissipation potentiais;
o, source density per unit volume and time,

1. INTRODUCTION

IN 1963, a new variational principle was proposed by
Gyarmati [1, 2}-~which has some fundamental rela-
tionship with the Onsager’s principle of least dissipa~
tion of energy [3, 4]—by means of which dissipative
transport processes in space and time can be described.

The so-called Gaussian type of universal form of the
principle seemed fo be extremely general—due to its
validity in quasi-linear and in certain types of non-
linear cases—and was, therefore, called “The Govern-
ing Principle of Dissipative Processes™ [ 5, 6.

The most general form of the Gyarmati’s principle i3
represented by the {ollowing equality [5-7]

@J [o—~y—p]dV =0, (1)
¥

for any instant of time under constraints that the
balance equations

pu+V. =0y {=12...1) {2}

are satisfied. Here o is the entropy production of the
system, i and ¢ are the local dissipation potentials and
the integration is considered over the total volume, ¥,
of the continuum. T; is the substantial current density
and g; is the source of @; per unit volume and unit time.
The entropy production, o, in the case of irreversible
processes taking place in a continuum can always be
written in the following bilinear form

:
Gzi:;;ri*xf>0§ {3
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where T; and X; are the thermodynamic currents and
forces respectively and the quantity o is positive definite
one according to the second law of thermodynamics.
According to the experimentally well-verified Onsager
theory of thermodynamics, the currents are linear
functions of the forces, i.c.

J
T = Z Likxlu (1:: 1¢2,~-~f)~ (4)

where the coefficients, Ly, are constants and represent
the conductivities. These relations are called the linear
kinematical constitutive laws for the coefficients of
which the famous Onsager reciprocal relations

Lyx= Ly (L k=12,..1) (5

are valid.
The constitutive equations (4) can alternatively be
written as

S
X; = Z RyTh, (i=12..f), ©)
k=1

where the coefficients Ry represent the resistances. The
matrices of the conductivities and resistances are
mutually reciprocal, i.e.

S S
Y LimRmc= ), RimLmic=0u, (iLk=12,..1) (7)
m=1 m=1

Here dy is the Kronecker symbol, ie. dx =1, i=k
and 04 =0, i #k Thus Ry satisfy the reciprocal

relations
Riu =Ry, (k=12,..f) (8)

The local dissipation potentials iy and ¢ are defined in
the following homogeneous quadratic forms

1L
v(iX, X)= 3 Ly X X, 20, %)
k=1
1 S
¢(T,T)55 Y RyT. T >0, (10)
=1

which correspond to the entropy form (3) written in
terms of thermodynamic forces and currents respec-
tively.

The principle (5) with (3), (9) and (10) takes the form

!
Y LyVE.VL

L 1
5“2 .- )
viizt 2.5

17
- < Z Rik’]-}.Tk]dlj:O. (11)

2 ik=1

In (11) the thermodynamic forces, X;, are substituted
by VI, which are given as

X; = VI, (12)

since in the case of transport processes the forces can
always be generated as the gradients of certain “I"””
variables which are state parameters and simul-
taneously internal parameters with respect to the forces

5, 6].

2, THE DUAL FIELD METHOD

The approximate method which we are going to
discuss has its base on the following facts of the GPDP:

L. The entropy production

s
o= Y T,.VIL;
i=1
is a symmetrical bilinear expression of current densities
T; and the conjugated forces VI.
2. The local dissipation potentials

S s

l Z leVl",Vl'}‘ and ¢ El Z R,'kT,-.Tk
2 k=1 2 Bk=1
are connected with one-another by Legendre dual
transformation with respect to the current densities
T; and the conjugated forces VI

3. The structure of the varied form of the principle
(11) possesses the duality property with respect to the
transport equations and the linear constitutive laws.
From this volume integral the transport equations and
the linear constitutive laws are following simul-
taneously.

Y=

These facts ensure the possibility of developing the
approximate method which may be called “The Dual
Field Method™ [8].

The two sets of independent variables [Ty, T, ... Ty}
and [VI},VL,...VI;] are connected with each other
by the relations (4) and (6). In this method, therefore,
we assume one set of these variables and then the other
set can be obtained with the help of the constitutive
relations. In the irreversible transport phenomena, the
variables T; are fundamental ones, since their gradients,
VI, are the driving forces of dissipative transport
processes. We, thus, approximate the set [VI;, VL, ...
VI;] by another set [VI}*, VI;*,... VI}*]. Consequently
the corresponding current densities are obtained by the
following constitutive equations

;
T = Z La(0, I, IVEX, (1=1,2,...f). (13)
k=1
It is interesting that the duality property of the govern-
ing principle is preserved and in the case of exact solu-
tion the two sets of fundamental variables I; and I}*
coincide, i.e. [; = [}* for all i.

The principle (11) with the help of (13) takes the

following form

K
J j Y [ 3LV = VI*) . (VI; - VE¥)]dV = 0, (14)
Vik=1
which together with the balance equations
!
pall) + ¥ V. (LaVI¥) = o), (i=1,2,...f) (19
k=1

serves the basis for the dual field method.

We shall confine our following treatment for the case
of one, I', parameter. In this case, the principle (14} is
obtained as

0 J [=3$L(VE —VI*) (V[ -VI*)]dV =0, (16)
| 4
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and the balance equations (15) become
pd(D)+ V. (LVI*) = o(I),

where L is the conductivity of the system. To get the
approximate solution, we assume the field, I, in the
form

ty)

r=r"= i o {(1)gi(X),

i=1

(18)

where [g«(x)]’-1 are a set of linearly independent
functions which satisfy the boundary conditions im-
posed on I'. The coefficients, «;{1), are the variational
parameters to be determined with the help of the
principle (16). The balance equation (17), with the help
of (18), results to

pre )

+ V. [LEPWI*®] = o(T'™). (19)
This balance equation serves the purpose to determine
the field T'* in the form I'*™ and the solution of {19)
with the appropriate boundary conditions may be
obtained as

I* =@ = T*0x 1 ay,... 20)

It is remarkable that the volume integral (3) is
maximum at any instant of time for the real physical
processes, that is; for the exact value of the parameters
I; and the current densities T, It is fundamentally
important that the maximum is zero for any time [5].
It is found, however, that in the application of approxi-
mate procedure, the volume integral generally becomes
a function of time and therefore the volume integral
may be integrated over the time interval 0 <t <
during which the process is considered. Thus the
principle (16) becomes

[ T a',,).

s f ) j [ ~4L(VT —VT*). (V[ = V']

]

xdVde=0. (21)

The total variation of the principle (21) with the values
of I" and I'* from (18) and (20) becomes

da™ ore
m___ 4V, En)vr‘(n) —
L{[p o ( )= ] dot;

‘ I aTm
Ly — r*(n)
+7{V ) r(,,) a
F;) *(n)
[p{n)%+ V. (Ln)vrin)) o.{n)] r
o

d doa®™
e m " ([T (n)
dt [(p ot VL )=o )

% (n) T(")
« N gy b drmvre — gorsen) o
Oc; Q Oo
+ [ fAllhva glio L("’Vr*""] o™ — ,(_1_
oy dt

% [{ fiAv] gl (n)vr*(n))

or*
.dQ =0,
dd; }} @

(i=12...n: (22)

and
od T
(] My (n) d
s >}
x)
+ 3(; (eovre - v L7 ag o,
Q aai t=oc
i=12...n. (23)

In (23), the subscript denotes that the parameters, a;,
are evaluated at the moment t = cc. Taking into
consideration the transversality conditions (23} and the
given initial conditions, we can solve the second-order
partial differential equations (22} to get the parameters
a; and thus the fields ' and IT'** respectively.

We have discussed the dual field method in universal
forms of the principle. In the following we consider this
method in the two partial forms of the principle as well.

() The Dual Field Method in force representation
In this case the variation is considered only with
respect to the actual field, I'™, keeping the assumed
field, T'**, fixed, 1.e. 6I*™ = 0. Taking this condition
into consideration, (22) yields to
are

8a™
() B My (n}
L{[p o + V. (V") —¢ ] p

(] n)
a0 or av
o™ o,

+ I[vr(u) VF*(")]

are

4; [LPVE® -V} ——.d0 = 0,

(1— 1,2...n). (29)

Here the parameters o; can be determined from the set
of equations (24) and hence '™ and T*™ are obtainable.

(1) The Dual Field Method in flux representation

This representation is characterized by the condition
ST™ = 0 and can be used only if I'*™ contains varia-
tional parameters ; and o;. In this case the relations
(22) and (23) reduce to

*(n)
{ p(n) (9 + V. ( IS")VF(")) o“"’} or
v ot 6a,~

da™ g
— =11 p™ e + V(I ) — g av
dt {(p ot Y )=o ) 0 }}

§{[ﬁ">vr<"> LIV —— a4
Q

()
X [( JogTe (n)Vr*(n)) 51(; }}_dn’

o;

(i=12...n; (25
and
#(n)
RO et Y L B
v ot a“i t=c0
Ar*=
56 [L9Vro— V]|  .da=0,

0 jt=ow
(z=1,2...n}. (26)
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The solution of the equations (25), with the trans-
versality conditions (26) and the initial conditions, give
the variational parameters o;.

We shall apply these methods to get the solution of
the Bénard convection.

3. THE FORMULATION OF GPDP FOR
BENARD CONVECTION

The balance equations of energy and momentum for
the linearized Bénard convection are [9]

oT
cvpg}; +V. T, =c,pofn.v, 2N
ov
pos + V.P = poganT, (28)
where P is the pressure tensor and is given by
P = dp+ P, (29

p being the hydrostatic pressure and P* is the symi-
metrical part of the pressure tensor whose trace is zero.
n = {0,0,1)} is the unit vector, v and T are the perturba-
tion velocity and temperature fields respectively and ¢,
denotes the specific heat at constant volume while pg
is the density of the continuum. «, § and g denote the
coefficient of volume expansion, temperature gradient
and the gravitational force respectively. It is well-
known [5, 6] that in the formulation of Gyarmati’s
principle for thermohydrodynamical system, it is
preferable to use the energy picture of the principle.
For the formulation of the Bénard convection it is also
convenient to use InT instead of T in the balance
equations (27) and (28)

CePo (% InT+V.T,=c,ppfn.V, 30
ov
poa +V.P=pogaminT. (31)

Since we shall use the energy picture of the principle
instead of the entropy picture, we shall consider the
expression for energy dissipation, To, instead of the
entropy production, . The expression for energy dissi-
pation in the case of linearized Bénard convection is [ 7]

To= —T,.Vin T—P» ; (Vv (32)

and the linear laws in this case may be written as
T,= —L,VinT, (33)
P = — LWy, (34)

Thus the dissipation potentials are obtained in energy
picture as

Y* = Ty = H{LAVIn T+ L(Wvp : (W], (35)
¢* = T = 3[R, T2+ R, P : P, (36)

where

s _Lfov, dvg _
(ﬁv)xﬁ - 2 (536;; + @x1>’ (a?ﬁ - 1’ 2ﬂ 3)' (37)

We can, now, formulate the variational principle in
actual form

é f [—Tq.Vln TP vy — TP — L
v 2 2

X (VW) : (V) — %Tj - gffm : f’”]dV =0, (38)

Using the following vector identities
V@V uN=T, ViaT+hTV.T,
V. v =P (Hvp v (V. PY);

(39}
(40)

reduces the principle (38) to the form

éinT
o J {— In T[c,,po ~?-~ - c,,poﬁn.v]
v ct

I% L,
—v.[po% + Vp—pogonIn Til - ?(Vln T?
Ct

- —L:-Zf(ﬁv)" : (ﬁv)‘ - %Tﬁ — %f;vs . fm}

xdV =0 (41)

In the above integral, we have neglected the terms
containing the surface integrals, since in the problem
under consideration the variation along the surface is
neglected.

In order to derive the transport equations as the
Euler-Lagrange equations of the above principle, we
use the side conditions represented by the balance
equations (30) and (31) in the following variational form

é
In7é [cvpo aln T+pV.v+Po: (ﬁv)i,
= —-InTéV.T)= ~V.{InTHT)
+VInT.6T,, (42)

F
v.é[p05¥+ Vp—ganin T}= —v.6[V.P"]

= —V.(v.6P)+(Vvy: 6P, (43)

when the conductivities and resistances are constants,
the following identities are valid

3L, 6(VInTP = V.[L(VIn T} In T]
~V.AL;VInT)%InT,

L S[(V¥F - (Vv¥] = V. [Lo(Vv) : 6v]
—V.[L{(VvF].6v. (45)

(44)

Operating the principle (41) with J and using the side
conditions (42) and (43) and the identities (44) and (45),
we get

j {—[c,pogln T—cypofn.v—V . (L, Vin T)]éln T
v
av
—-[pogz + Vp—pogamIn T—V. (Ls(\‘}v)s)J.(Sv

—(R,T,+VIn T).6T,— (R, B+ (%vp): 5?%}

xdV =0, (46)
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Here again we have neglected the terms containing the
surface integrals. The vanishing of the volume integral
in (46) gives the linearized equations of the Bénard
convection

T
Cupo%z —Cppofn.v=V . (L,VInT),
or 47

oT
~— = Bn.v+kV?T,

ot
and
ov

pos + Vp—poganT =V. [Ls(ﬁv)s]a

or (48)
0 1
O o Vp+ganT+wWh,
ot Po

here k and v denote the heat diffusivity and the kine-
matic viscosity respectively.

4. THE APPLICATION OF THE DUAL FIELD METHOD

The variables In T and v are the basic ones because
their gradients are the driving forces of dissipative
transport phenomena, therefore, we can introduce a
second set of variables In T* and v* which are related
with the thermodynamic currents through the following
constitutive laws

T,= —L,VInT*, 49)

Bre = — L (Vy¥y. (50)
The assumed temperature and velocity fields In T* and
v* are to be determined with the help of balance
equations (30) and (31) which take now the following
form

0
Copo-InT—V (L,VInT*) = c,pofin.v,

% (1)

0
poa—: - V.[LSNV*)‘] = —Vp+pogomin T,

(52)
It is mentionable here that In T* and v* are to satisfy
the same boundary conditions as In T and v respectively.
The principle (41) now takes the following alternative
form with the help of (49) and (50)

8 j {—ln T[c.,po-—qln T—cvpoﬁn.v]— &I(Vln Ty
v ot 2

ov

L;
- —2—(V1n T*)* —v. [po P

+ Vp—pogomIn T}
L, L,
- 7(%’)’ : (st)‘ - ?(ﬁv*)’ : (ﬁv*)’}

xdV=0. (53)

The partial integration reduces to the principle (53)
in the following alternative form

8 L
5| {nT{copofn.v—c,po=—InT |- =2(Vin T}
v ot 2

L; 0
+ —2—‘ln T*VZIn T*+v.[poganln T—poé;}
¢

_ %(‘?v)’ (VP + %v* .VZV*}dV =0. (54)

The pressure term vanishes from this volume integral
due to the boundary conditions which can be seen by
integrating partially. In evaluating the integral the
conditions v* = 0 and In T* = 0 at the boundaries are
used. Substituting the values of V2In T* and V2v* from
(51) and (52), the principle (54) results as

0
é lnT[ic,,poﬂn.v—c,,po«lnT —E(VlnT)2
v ot 2

.
—%ln”[*[c,,poﬂn.v—cvpoéln T:I

+v. [pogan InT-pg g] — 525(\7\1)’ : (\7v)s

—dvr [pogan In T——pogjl} av =0. (55)

The pressure term again vanishes due to the boundary
conditions.

The disturbances can be assumed as usual in the
normal mode analysis:

a1 Xy azXy
In T = fd6(x3)cos cos——=e™,
d d
v ai Xy dyXs
v3 = - G(x3)cos cos —-e™,
d d
(56)
a, dG . a1 Xy a;xX2 o
vy = ——Vv—sSin——Ccos——¢
a® dx; d d ’
as dG a1X1 . X3 o
V3= — —V-—COS n—-e
a? dx; d ’

where a = (a?+4a3)"? is the wave number of the
disturbance and w is the frequency which, in principle,
may be a complex quantity. The velocity components
v1, v; and v; satisfy the equation of continuity V.v = 0.
Similarly we can assume the disturbances In 7* and v*

In T* = Bd6*(x3)cos D1 cos 2222 e,
d d
v = gG*(Xg,)COS a‘:l S fax2 e™,
f= —ﬂvfli*sina”cl 22 gon °7
@ dx; d d ’
vf = —ﬁyd—Gj os 21 gjn 2272 e
27 dx; d d

The velocity components v*, v* and »* satisfy the
continuity equation V.v* = 0.
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Substituting (56) and (57) into (55) and averaging
over x;~x; plane, we get the principle as

143 2
[ forn- £ o]

3

2d*

[2(E) o) |

2
—3pogafvG*o —w [C,, pof?d262 + pg % G*

~ 3¢, povBPGO* + pogafvGO —po

v2

dG\?
*‘POaizf(fi;) ~ depol 4206 = po

2 2 dG dG*
x-GG ’ GG]}dz—.

a2 PodTr 4z dz (58)

Here we have used the variable z = x3/d. The boundary
conditions in terms of G and § are [9]

z=0: 6=0,G=0,%(~;=0;
- (59)
dG

z=1: 6_0,G=0,a:=0

The similar conditions are to be satisfied by 6* and
G*. We use in (58), very simple trial functions for the
disturbances, G and 8 satisfying the boundary condi-
tions (59)

G = Az =223+ 2%,

§ = B(z—1z%),

(60)
(61)

where 4 and B are the two variational parameters. The
approximated disturbances 6* and G*, we get from the
balance equations (51) and (52), which may be written as

~

h In T—c, pofivs,

3 (62)

AVEInT* = ¢, po

('32

(‘;2
uvivs = ——poga( )ln T+poa~Vzv3 (63)

02

Using the expressions (56) and (57); (62) and (63) are
obtained as

d? d* "
(/‘ —a )0* = C,_.p()*;‘wg — ¢ {)OVG,
A A
d4
(&? B

dz?
dZ
a“)G* = poMaW +—w
. v

(64)

2
20—
dZ'2 v

2
X ((%23 - a2>G. 65)

For the linearized Bénard convection, the principle of
exchange of stability is valid, i.e. w is real [9]. Since
the marginal stability curve is found by setting Real
w =0 and in this case w is real, therefore, to get the
marginal stability curve, we simply put @ =0 in the
equations (64), (65) and in the principle (58), which

reduce to:

1d3
é JO Z ;\c,,povﬂ Go—%ﬁ[(dz) a202}

3 d 2
— 3, povBPGO* —po [2 (Ezq) rad

2d
4 1 /d%G
a? (dz2
- %pogaﬁvﬂG*}dz =0, (66)

d? Cy pov
g )er = - 9%,
(dz ¢ ) i

a4 d d+
<d—24—2 dz-l—a)G*—gaE—a()
Solving for the functions 6* and G* from (67) and (68),

with the help of (60) and (61), we get

2
) } + pogafvGo

(67)

(68)

ore ) z___ (a*+12)z% lz+(2a2+24)
kla* & a* a* a®
+ale“z+a2e“’z} (69}
B 4 4
G*=—2ga—ﬂz——[—w+z 22+ (asz +og) e
at v a
+(cx52+a(,)e"'z:', (70)
where
2@*+12) e “—1 2@*+12) 1—¢*
U = T & _-a g =——¢ 3 ~a’
a ef—e a e’—e
d3by —dibs . diby —dbs
4 =, = ——,
* T diby—dsb, * T dybi—dyb,

4

as =—— 1 —2a04—as, 0 = —5 — Oa,
a a

by = ae**+2a*—a,
dl = Cza—l,

by =(1+a)e**+a-1,
by =e’—a+5.

4 4
dy = e**—2a+1, dy =5 —1)+1—-.
a a

The expressions (69) and (70) satisfy the boundary
conditions

dG*
=0: G*=0, =0, 0*=

dz

4G+ (71)
Z=1.'G*=0, =0, 9*:

dz

Finally the principle (66)—with the substitution of the
expressions for 6, G, 8* and G* and integration—
reduces to

a3 JAB ip? 2\
5[4 {c”p"vﬂ “T( +30>B

kv? RAB pv
d* 140 2d*

% ,_4._+_,‘i+__4_ AZ_%polii_v_z
105 ° 630  5a® d#

xwmmﬂzm

- ‘—‘(Cv povBPBiA* +po—t

(72
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where
P 1/4 N a? 2 + anfer—2ester)
1=l o — = | aler—2es+ ¢4
a*\5a* 630 105
+ata(cg —~2ce + ca),
8 2+ asles—cs) Hauler —c)
2 = o= sk A3lC3 —~Cs)H el —C3
30 34°
+as{cs—ce)+aglca —ca),
t.i P‘I
¢y = | ze®dz, ca= | ze ¥dz,
Jo JO
ny .
e3= | z%e®dz, 4= | z*e "%z
Jo Jo
~1 1
cs= | z%edz, o= | 23e"%dz,
Jo Jo
'l 1
cr= | z*e®dz, = j zve % dz,
Jo 0

R = gafd*/kv is the non-dimensional parameter called
Rayleigh number.

From the principle (72), we can get three different
expressions for Rayleigh number according to the three
representations of the Gyarmati’s principle.

5. RESULTS

(i} Universal representation

In this case, we vary the principle (72) with respect to
the variational parameter B and the Rayleigh number,
R, to get the neutral stability curve, that is; a relation
between the wave number, a, and the Rayleigh number,
R. The peutral stability curve is found to be

R = a}(10+4%)/308,. (73)

The critical wave number, ., and the corresponding
Rayleigh number, that is; critical Rayleigh number, R,,
were found numerically

critical wave number, a, = 3-122,
critical Rayleigh number, R, = 1748-696.

These values are remarkably close to the exact values
3-117 and 1708 obtained by Chandrasekhar [9].

(i) Force representation

In the force representation the principle is varied
with respect to the thermodynamical forces only. There-
fore, in this case the terms which are due to the thermo-
dynamical currents have no contribution and the
principle (72) takes the simpler form

d? AB if*/1 4 kv?
8| E-de, povpros — (24 L Vg2 b
[4 {C B 0T 2 <3+30)B ThogE

y RAB v /4 + a? + 4
140 P°23%\105 7 630 " 542

x AZH =0. (74)

In the above principle the underlined parameters are
the contributions due to currents and we do not vary
with respect to these quantities. Thus varying the

principle (74) with respect to variational parameters 4
and B, we get the following equation for the neutral
stability curve

Y LA (. i)

R= (140 (3 * 30) (105 Yoo tsa) P
This expression is just similar to that found by
Schechter [10] by local potential method. As it has
already been proved by Gyarmati and others [5-7] that
local potential method is in practical respect equivalent
to the force representation of the governing principle of
dissipative processes, this practical problem confirms
the theoretically proved equivalency. In this case we get
the critical wave number, a., and critical Rayleigh
number, R, as

a, = 3117,
R, = 1749-976.

(iii) Flux representation

The characteristic of this representation lies in the
fact that the governing principle of Gyarmati is varied
with respect to the current densities, keeping the force
terms constant. Therefore the principle reduces to

d3 AB  1i{c,povBP kv AB
Sl —{c, pof? — — ~ 2HOF) p 42 2 rEZ
[4{”0’6140 2 PR

k*v R?
“%Poaﬁ; ;5[3232}] =0. (76)

Varying the principle (76) with respect to the variational
parameters A and B, we get the neutral stability curve

R = a*/(140¥*B:f,. (N

Therelation (77) was solved numerically and the critical
wave number, g, and the corresponding Rayleigh
number, R,, are found to be

a. = 3119,
R, = 1706-815.

These values are quite in agreement with those of exact
results [9].

6. CONCLUSION

The critical wave numbers and Rayleigh numbers
obtained with the help of the governing principle in
universal, force and flux representations are listed in
Table 1 with those of exact values.

Table 1
Exact Universal Force Flux
Critical wave
number, a, 3117 3122 3117 3119
Critical Rayleigh
number, R, 1707762 1748-696 1749-976 1706-815

It is interesting to note that the values of critical
wave numbers and critical Rayleigh numbers are
remarkably close to the more precise results obtained
by Chandrasekhar [9]. In particular, the critical
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Rayleigh number obtained by flux representation
method differs with that of exact result by less than
005 per cent, though the result is obtained on one
term approximation of velocity and temperature pro-
files. The results obtained by universal representation
are quite satisfactory for the most of engineering
applications. The results can be improved by consider-
ing more terms in the Fourier series in terms of which
the temperature and velocity perturbations can be
expressed.

It may be mentioned that the results found for the
Bénard convection in universal, force and flux repre-
sentations are in the same order as found by Stark for
one~dimensional heat conduction problem [8] with the
help of governing principle of dissipative processes. The
flux representation gives the best approximation, while
universal form comes next to it and force stands the
last. 1t may be noted that the universal form of the
principle is the actual variational principle and the
results obtained on the basis of this actual form differ
by less than 2-5 per cent with that of exact values in
this fundamental problem of stability. Thus the applica-
bility of the governing principle is established for the
solution of the practical problems of hydrodynamic
stability.
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APPLICATION DES LOIS FONDAMENTALES DES PROCESSUS DISSIPATIFS
A LA CONVECTION DE BENARD

Résumé — L’article traite de 'application des lois fondamentales des processus dissipatifs 4 la convection
de Bénard, c’est a dire au mouvement provoqué par I'instabilité thermique d’une mince couche horizontale
de fluide soumise a une différence de température constante. Les équations linéarisées de la convection
de Bénard sont obtenues a I'aide de la forme universelle des lois fondamentales. On a utilisé la méthode
dite du champ dual développée sur la base des lois fondamentales des processus dissipatifs afin d’obtenir
une solution du probléme dans chacune des trois présentations du principe, c’est a dire respectivement
en termes universels, de force et de flux. Les résultats obtenus & I'aide du principe variationnel lui-méme,
c'est & dire par la forme universelle du principe, différent de moins de 2,5% des valeurs exactes alors
que la représentation en termes de flux fournit des résultats mieux approchés et que la représentation
en termes de force s’avére la plus mauvaise,

DIE ANWENDUNG DES HERRSCHENDEN PRINZIPS DISSIPATIVER
PROZESSE AUF DIE BENARD-KONVEKTION

Zusammenfassung— Die Arbeit befalit sich mit der Anwendung des “Governing Principle of Dissipative
Processes™ (Herrschendes Prinzip dissipativer Prozesse), kurz GPDP, auf die Bénard-Konvektion, das
heiBt auf die Bewegung, die durch die thermische Instabilitdt einer diinnen horizontalen Fliissigkeitsschicht
hervorgerufen wird, wenn ein konstanter Temperaturunterschied aufgepriigt wird. Die linearisierten
Gleichungen der Bénard-Konvektion werden mit Hilfe der allgemeinen Form des “Governing Principle”
(herrschenden Prinzips) gewonnen. Die sogenannte Dualfeldmethode auf der Basis von GPDP wird
angewandt, um die Lésung des Problems in allen drei Darstellungen des Prinzips, das heiBt allgemein,
beziehungsweise mit Kréften oder Fliissen zu erhalten. Es wurde gefunden, daB die Ergebnisse, die durch
das Variationsprinzip, das heifit durch die allgemeine Form des Prinzips erhalten wurde, um weniger
als 2,59 von den exakten Werten abweichen, wdhrend die Darstellung mit Flissen die besten
Niherungsergebnisse und die mit Kriften die schlechtesten Resultate liefern.

NPUMEHEHME OCHOBHOI'O JUCCHUIIATHMBHOI'O NPUHUUIIA
K KOHBEKLIMM BEHAPA

Amnoramus — B cTaThe pacCMATPHBAETCH MPHMEHEHNE OCHOBHOTO MPHHUMIA IMCCHIIATHUBHBIX NPO~
[IECCOB K KOHBEKLHH beHapa, T. €. ABHKEHUIO, BOSHHKAIOLIEMY H3-32 KOHBEKTHBHOM HEyCTOHYHBOCTH
TOHKOIO TOPH3OHTANBHOIO C0S AHAKOCTH NOPH HATHYMH TIONEPEK CJI0A NOCTOSHHOH pa3HOCTH
Temueparyp. JluHeapu3opaHHbIE YPaBHEHHsl KOHBEKTUBHOIO [aBHxeHus BeHapa BbIBOAATCH C Mo-
MOLLIBIO OCHOBHOT'O IIPHHIAIA B €0 YHHBEPCaNbHOM BHae. [list pelueHus 3a0a4M HCIOb3yeTCsa Tak
HA3LIBAEMBIA NBYXMONEBOH MeTOH, pa3paboTaHHbI HAa OCHOBE YKa3aHHOTO npuuuMna. Ipuwuun
HCIIOJIL3YETCA B TpexX (popMax: B yHHBEPCAJILHOM BUAE, OJ1 CHJI M AJIS TIOTOKOB.

Hajinero, 4To pe3yabTaThl, MOJyYEHHbIE C HOMOIILK MCTHHHOIO BAPMALUMOHHOFO MPHHLUHNA,
T. €. C MOMOLUIBLIO NPUKLIMNA B €10 YHHBEPCATTBHOM BHIE, IPUMEPHO HA 2,5 3, OTIHYAIOTCA OT TOYHBIX
3Havyenuit. Hawnyuuree npubimxkenne DOCTHTAaeTCs NPH MCHONBL3OBAHHM NMPHHLMIA INS IIOTOKOE,

B TO BpEM3s KaK NPH HCHIONBIOBAHKH NPUHLMOA ANA CHJT npubamKeHue camMoe Nnnoxoe.



