
1, lNTRODUCTlON 

IN 1965, a new ~~~~~t~~ual principle was proposed by 
Gyarmati [17 Zf-.which has some fu~darn~nt~~ rek 
tionship with the Onsager’s prineipie of least dissipa- 
tion of energy [3, 43--&y means of which dissssipative 
transport processes in space and time can be described, 

The so-called Gaussia~~ type of universal form ef the 
p~~~~~~~ seemed to be extremely genera&-due to its 
vahdity in ~~~~-~~n~r and in certain types of non- 
Iinear crises--�md was, the&are> cdted ‘The Coverrx- 
ing Principfe of ~iss~patiye Processes‘ [5,6f. 

The mast general form of the ~yarmat~s ~~~~cipl~ is 
represented by the fallowing equality [S-7] 
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where Ti and Xi are the thermodynamic currents and 
forces respectively and the quantity e is positive definite 
one according to the second law of thermodynamics. 
According to the experimentally well-verified Onsager 
theory of thermodynamics, the currents are linear 
functions of the forces, i.e. 

Ti = f LikXk, (I= 1.2 )... f’), (4) 
k=l 

where the coefficients, Lik, are constants and represent 
the conductivities. These relations are called the linear 
kinematical constitutive laws for the coefficients of 
which the famous Onsager reciprocal relations 

Lik = 4i, (i,k = 1,2,. .f); (5) 

are valid. 
The constitutive equations (4) can alternatively be 

written as 

Xi = i &K (i = I.2 ,..., f), (6) 
k=l 

where the coefficients Rik represent the resistances. The 
matrices of the conductivities and resistances are 
mutually reciprocal, i.e. 

$, Li, Rmk = mi, Rim L,k = 8ik. (i,k = 1,2,. ..f). (7) 

Here Sik is the Kronecker symbol, i.e. 6ik = 1, i = k 

and aik = 0, i # k. Thus Rik satisfy the reciprocal 
relations 

Rik = &i, (i, k = 1,2,. ..f ). (8) 

The local dissipation potentials $ and 4 are defined in 
the following homogeneous quadratic forms 

$(X,X)=k,i LikXi.Xk>O, (9) 
r,k 1 

4(T, T) SF i i Ri/+ Ti. Tk > 0, (10) 
I,!+ 1 

which correspond to the entropy form (3) written in 
terms of thermodynamic forces and currents respec- 
tively. 

The principle (5) with (3), (9) and (10) takes the form 

-iii R&T,ldc= 0. (11) 
. 1 

In (11) the thermodynamic forces, Xi, are substituted 
by Vri, which are given as 

xi = vri,, (12) 

since in the case of transport processes the forces can 
always be generated as the gradients of certain “I” 
variables which are state parameters and simul- 
taneously internal parameters with respect to the forces 

[Is, 61. 

2. THE DUAL FIELD METHOD 

The approximate method which we are going to 
discuss has its base on the following facts of the GPDP: 

1. The entropy production 

cr= c’I;.Vr, 
i=, 

is a symmetrical bilinear expression of current densities 
Ti and the conjugated forces Vc. 

2. The local dissipation potentials 

RikTi.Tk 

are connected with one-another by Legendre dual 
transformation with respect to the current densities 
Ti and the conjugated forces Vc. 

3. The structure of the varied form of the principle 
(11) possesses the duality property with respect to the 
transport equations and the linear constitutive laws. 
From this volume integral the transport equations and 
the linear constitutive laws are following simul- 
taneously. 

These facts ensure the possibility of developing the 
approximate method which may be called “The Dual 
Field Method” [8]. 

The two sets of independent variables [TI,T2,. .T,3 
and [Vri, VG,. VI,] are connected with each other 
by the relations (4) and (6). In this method, therefore, 
we assume one set of these variables and then the other 
set can be obtained with the help of the constitutive 
relations. In the irreversible transport phenomena, the 
variables Ii are fundamental ones, since their gradients, 
Vc, are the driving forces of dissipative transport 
processes. We, thus, approximate the set [VG,VG,. . . 
VG] by another set [Vii*, V&*, . . VT,]. Consequently 
the corresponding current densities are obtained by the 
following constitutive equations 

Ti = i Lik(&, G,. zj-)V&*, (i= 1,2,...f). (13) 
k=l 

It is interesting that the duality property of the govern- 
ing principle is preserved and in the case of exact solu- 
tion the two sets of fundamental variables G and c* 
coincide, i.e. c 5 G* for all i. 

The principle (11) with the help of (13) takes the 
following form 

Vr;*).(VTi-VT;:*)]dv= 0, (14) 

which together with the balance equations 

pi(F)+ i v.(Likvri)=g(fi), (i=1,2,...f) (15) 
k=l 

serves the basis for the dual field method. 
We shall confine our following treatment for the case 

of one, I, parameter. In this case, the principle (14) is 
obtained as 

6 
s 

[-)L(vr-vr*).(vr-vr*)]dv = 0, (16) 
” 
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and the balance equations (15) become 

pd(r)+V.(LVr*f = o(I), (17) 

where L is the conductivity of the system. To get the 
approximate solution, we assume the field, I, in the 
form 

I E I’“) = i Ui(t)gi(X), (18) 
i=l 

where [gi(X)JF=i are a set of linearly inde~ndent 
functions which satisfy the boundary conditions im- 
posed on I. The coefficients, E<(r), are the variational 
parameters to be determined with the help of the 
principle (16). The balance equation (17), with the help 
of (1X), results to 

P(I(n)) da(r’“‘) dt + v . [Lp)vr*q = crp)). (19) 

This balance equation serves the purpose to determine 
the field I* in the form I*@) and the solution of (19) 
with the appropriate boundary conditions may be 
obtained as 

r* z r*(R) = r*(yX, t, CC,, , . . ff,,d, . . . d,). GQ) 

It is remarkable that the volume integral (3) is 
maximum at any instant of time for the real physical 
processes, that is; for the exact value of the parameters 
q and the current densities Ti. It is fundamentally 
important that the maximum is zero for any time [S]. 
It is found, however, that in the application of approxi- 
mate procedure, the volume integral generally becomes 
a function of time and therefore the volume integral 
may be integrated over the time interval 0 < t < cc 
during which the process is considered. Thus the 
principle (f 6) becomes 

6 x 
Is 

[-:L(vr-vr*j.pr-vr*g 
0 v 

x dVdt = 0. (21) 

The total variation of the principle (21) with the values 
of I and I* from (18) and (20) becomes 

and 

do 

+ .dO=O, 

(i= 1,2...n). (23) 

In (23), the subscript denotes that the parameters, ai, 
are evaluated at the moment t = co. Taking into 
consideration the transve~~ity conditions (23) and the 
given initial conditions, we can solve the second-order 
partial differential equations (22) to get the parameters 
ai and thus the fields I@) and r*@) respectively. 

We have discussed the dual field method in universal 
forms of the principle. In the following we consider this 
method in the two partial forms of the principle as well. 

(i) The Dual Field Method in force representation 
In this case the variation is considered only with 

respect to the actual field, If”), keeping the assumed 
field, I*@), fixed, i.e. K*@) = 0. Taking this condition 
into ~nsideration, (22) yieids to 

+ [fi)vr(n) - b”‘Vr*“‘-J g. dQ = 0, 

I 

(i = 1,2.. . n). (24) 

Here the parameters ai can be determined from the set 
of equations (24) and hence I(“) and I*(“) are obtainable. 

(ii) The Dual Field Method injfux representation 
This representation is characterized by the condition 

6P = 0 and can be used only if I’*(“) contains varia- 
tional parameters aj and tii. In this case the relations 
(22) and (23) reduce to 

da(“) 
p __ + v . (pvp) _ ow 

1 

ar*W 
- 

at aai 

(nf aa 
-&- i- v . (b’VP) - CT(“) 

(i= 1,2...n); (25) 

and 

(i = 1,2.. . n). (26) 
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The solution of the equations (25), with the trans- 
versa&y conditions (26) and the initial conditions, give 
the variational parameters tli. 

We shall apply these methods to get the solution of 
the Benard convection. 

3. THE FORMULATION OF GPDP FOR 
BBNARD CONVECTtON 

The balance equations of energy and momentum for 
the linearized Benard convection are [9] 

3T 
c,poz + V.T, = c,po@r.v, (27) 

8V 
(28) 

where P is the pressure tensor and is given by 

P= 6p+s”s, (29) 

p being the hydrostatic pressure and fi is the sym- 
metrical part of the pressure tensor whose trace is zero. 
n = (O,O, 1) is the unit vector, v and T are the perturba- 
tion velocity and temperature fields respectively and c, 
denotes the specific heat at constant volume while p. 
is the density of the continuum. a, j3 and g denote the 
coefficient of volume expansion, temperature gradient 
and the gravitational force respectively. It is well- 
known [5, 61 that in the formulation of Gyarmati’s 
principle for thermohydrodynamical system, it is 
preferable to use the energy picture of the principle. 
For the formulation of the Benard convection it is also 
convenient to use In T instead of T in the balance 
equations (27) and (28) 

2 

cC,pOilnT+V.T,= c~~o~n.V, (30) 

* 
po~+V.P=p0g~nlnT. (31) 

Since we shall use the energy picture of the principle 
instead of the entropy picture, we shall consider the 
expression for energy dissipation, 7’0, instead of the 
entropy production, o. The expression for energy dissi- 
pation in the case of linearized Benard convection is [7] 

Ta= -T,.VlnT-@:(X&y (32) 

and the linear laws in this case may be written as 

T, = -L$.VlnT, (33) 

* = -L*(V%)“. (34) 

Thus the dissipation potentials are obtained in energy 
picture as 

(1/* = Tt,b = f[LA(V In 7’)’ + L&Vv)s : &)s], (35) 

r$* = T$ = $[R,T,Z+R,+ : k]. (36) 

where 

(K%)& = ;[$ + $j, (a,P = 1,2,3). (37) 

We can, now, formulate the variational principle in 
actual form 

6 
SL V 

-T,.VlnT--B”:(Vv~-I;-*(Vln7’)2-~~ 

x (6vY : @vy -!+-~+~~ dV=(), 

I 
(38) 

Using the following vector identities 

V.(T,.X7lnTf=T,.VlnT+lnTV.T,, (39) 

V.(PU.v)= P=: (#v~+v.(V*~); (40) 

reduces the principle (38) to the form 

[ 

dV 
-v. poK + Vp-pogclnln T 

I 

- +(Vln 7)z 

_ ;($$p : (f&y - :T; - :@ : @‘s 

1 

x dY= 0. (41) 

In the above integral, we have negfected the terms 
containing the surface integrals, since in the problem 
under consideration the variation along the surface is 
neglected. 

In order to derive the transport equations as the 
Euler-Lagrange equations of the above principle, we 
use the side conditions represented by the balance 
equations (30) and (3 1) in the following variational form 

InT6 c,p0&lnT+pV,v+&.‘:(?v) 
[ 1 

= -In T&V. ‘&) = -V. (III TST,) 

+ V In T. 6T,, 142) 

v.6 
i 
po$+ Vp-gcmlnT 

1 
= -v.G[V.P*] 

= - VI (v . sP”)+ (VVY : se-, (43) 

when the conductivities and resistances are constants, 
the following identities are valid 

+LIG(Vln 7)’ = V. [Li,(Vln T)6ln Tj 

-V.(Lj_VlnT)P,lnT, (44) 

:.& s[@vr : @Y)q = v. [L&%y : bv] 

-v. p&y]. ik. (45) 

Operating the principle (41) with 6 and using the side 
conditions (42) and (43) and the identities (44) and (45), 
we get 

c,po$ln T-c,p0j?n.v-V.(L,Vln T) 61n T 1 
- I pozi- Vp-p0gclnlnT-V.(L,(Vv)“) 1 .Sv 

-(R~T~+Vln~,~T*-(~~+(~v~):~~ 
1 

xdV=O. (46) 
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Here again we have neglected the terms containing the 
surface integrals. The vanishing of the volume integral 
in (46) gives the linearized equations of the Benard 
convection 

ST 
c,poat-c”poBn.v=V.(L,VlnT), 

or 

and 

(47) 

2 = @.v+kV’T, 

p,,: + Vp-p,,gcmT = V.[L&], 

Or (48) 

& 
- = - &+ganT+vV’v, 
at PO 

here k and v denote the heat diffusivity and the kine- 
matic viscosity respectively. 

4. THE APPLICATION OF THE DUAL FIELD METHOD 

The variables In T and v are the basic ones because 
their gradients are the driving forces of dissipative 
transport phenomena, therefore, we can introduce a 
second set of variables In T* and v* which are related 
with the thermodynamic currents through the following 
constitutive laws 

T,= -LAVlnT*, (49) 

pvs = A,,(%*)-! (50) 

The assumed temperature and velocity fields In Tc and 
V* are to be determined with the help of balance 
equations (30) and (31) which take now the following 
form 

a 
c,PoatlnT-V.(L,Vlnr)=c,poSn.v, (51) 

po$ - V.[L,(Vv*Y] = -Vp+pogcmlnT. (52) 

It is mentionable here that In T* and v* are to satisfy 
the same boundary conditions as In T and v respectively. 
The principle (41) now takes the following alternative 
form with the help of (49) and (SO) 

6 
11 I 

-In T 
” 

c,g,$ln T-c,popn.v 1 - +(Vln TJ2 

-+(VlnTL)‘-v. peg+Vp--pogcmlnT 
I 1 

-$(#vy :(?yP -~(~v*y:(?v*~] 
x dV = 0. (53) 

The partial integration reduces to the principle (53) 
in the following alternative form 

L-1 +ZlnT*V21nF+v. pOgYnlnT--poz 
r 

? 

1 
-+%)Y(~v~+~v*. V2v* dV=O. 

I 
(54) 

The pressure term vanishes from this volume integral 
due to the boundary conditions which can be seen by 
integrating partially. In evaluating the integral the 
conditions v* = 0 and In P = 0 at the boundaries are 
used. Substituting the values of V2 In Tc and V2v* from 
(51) and (52), the principle (54) results as 

6 
J-I [ 

a 
V 

1nT c,p&n.v-c,poZlnT 
I 

-%(VlnT)’ 

-$lnTC 
L 

c,p&.v-c,pailn T 
I 

+v. pogcmlnT-po$ 
I 1 -$(Vvp:(Vvy 

-iv*. 
[ 

p,gcmlnT-pa: II dV = 0. (55) 

The pressure term again vanishes due to the boundary 
conditions. 

The disturbances can be assumed as usual in the 
normal mode analysis : 

01x1 a2x2 In T = fi d&x3) cos __ cos __ em, 
d d 

u3 = 1 G(x3) cos 
d 

al dG ~1x1 
(56) 

a2x2 
v, = - -v-_-in--cos-e-, 

a2 dxj d d 

a2 dG a1x1 . a2x2 
v2 = - -v-cos---sm--eem, 

a2 dx3 d d 

where a = (a: +a$)“’ is the wave number of the 
disturbance and w is the frequency which, in principle, 
may be a complex quantity. The velocity components 
or, v2 and a3 satisfy the equation of continuity V . v = 0. 
Similarly we can assume the disturbances In P and v* 

UlXl a2x2 In P = 6 dB*(x3) cos __ cos __ eon, 
d d 

03 = ~G*(x3)cos~cos*em, 
d d d 

ai dG* alxl (57) 
vf = --vYsm--ccosze,, 

a2 dx3 d d 

dG* 
of = -sy---cos--sm-e . 

~1x1 . a2x2 mt 

a2 dx3 d d 

The velocity components u*, u* and u* satisfy the 
continuity equation V . v* = 0. 
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Substituting (56) and (57) into (55) and averaging 
over x1-x2 plane, we get the principle as 

6 

- :c, ~,,v/~~GO* + posc&G -PO 3 

- :c, pojzd2e0* - po 

x$GG*-po&$z dz=O. 11 (58) 
Here we have used the variable z = x3/d. The boundary 
conditions in terms of G and 0 are [9] 

z=O: B=O.G=O,~=O: 

(59) 
z = 1: (3 = 0, G = 0, F = 0. 

z 

The similar conditions are to be satisfied by 0* and 
G*. We use in (58), very simple trial functions for the 
disturbances, G and t? satisfying the boundary condi- 
tions (59) 

G = A(z’-2z3+z4), (60) 

0 = B(z - z2), (61) 

where A and B are the two variational parameters. The 
approximated disturbances tI* and G*, we get from the 
balance equations (51) and (52), which may be written as 

1V2 In T* = c,p,iln T-c,p&s. (62) 

pv4v$ = -pogcc (2 + &)ln T+poiV21:l. (63) 

Using the expressions (56) and (57); (62) and (63) are 
obtained as 

(64) 

reduce to : 

6 cupovj?2GO-~[~~ +a%‘] 

V3 Z 
-:c,pov/l’GO* -PO% + a2G2 

+ PogaBvGQ 

- &poga/hBG* dz = 0, (66) 
I 

(67) 

G*=ga~a2B. 
v2 

(68) 

Solving for the functions 0* and G* from (67) and (68) 
with the help of (60) and (61), we get 

(a2 + 12)~’ 122 + (2a2 + 24) -- ___ 
a4 a4 a6 

+a1 e’“+cc2e-“’ 1 , (69) 

G* = s gaW4 4 - 
a2 v2 

- ;l’ + z-.z2+(~~z+s(4)eaZ 

+(a5z+~l~)e-“’ , (70) 
I 

where 

2(a2+12) e-“-l 
c(r =TP e”-e-a’ a 

d&r -dibs 

” = dlb2 -dzbl ’ 

2(a2 + 12) 1 -e” 
c(2 = TP e”-e-o’ 

d&l -dlbs 

a4 = d2bl -dlb2’ 

4 4 
as =;- l-2acrd-as, a6 = - - cL4, 

a2 

bl = (1 +a)e”+a- 1, bz = ae2’+2a2-a, 

b3 = e’-a+5. dl = e2’- I, 

d2 = eza-2a+ 1, d3=$(e”-l)+l -4. 
a 

The expressions (69) and (70) satisfy the boundary 
conditions 

z=O: G*=O, 
dG* 
dz= 0, 0* = 0, 

dG* 
(71) 

z= 1: G*=O, -= 0, 
dz 

e* = 0. 

Finally the principle (66)-with the substitution of the 
expressions for 6, G, 0* and G* and integration- 
reduces to 

B2 

For the linearized Benard convection, the principle of 
exchange of stability is valid, i.e. w is real [9]. Since 
the marginal stability curve is found by setting Real 
w = 0 and in this case w is real, therefore, to get the 
marginal stability curve, we simply put w = 0 in the 
equations (64) (65) and in the principle (58), which 

X 

82 
x RZj?2 - 

a2 
= 0; (72) 
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where 

PI =-$(j$+&-&)+a1(c7--2~5+c~) 

+ ~z(Cs - 2C6 + cd, 

P2 =f -~+a3k3-cg)+a4(~1-c3) 

+ a&4 - cd + a& - 4 

Cl = s i z ear dz 3 c2 = 
0 f 1 

ze-“ldz, 
0 

s 

1 1 

c3 = z2ear dz , c4 = z2 e-“dz, 
0 i 0 

s 

1 

s 

1 

cj = z3 eaZdz > c.5 = z3 e-““dz, 
0 0 

s 

1 1 

CT = z4ear dz 3 cg = 
s 

z4eWazdz, 
0 0 

R = ga@f4/kv is the non-dimensional parameter called 
Rayleigh number. 

From the principle (72), we can get three different 
expressions for Rayleigh number according to the three 
representations of the Gyarmati‘s principle. 

5. RESULTS 

(i) Universal representation 
In this case, we vary the principle (72) with respect to 

the variational parameter B and the Rayleigh number, 
R, to get the neutral stability curve, that is; a relation 
between the wave number, a, and the Rayleigh number, 
R. The neutral stability curve is found to be 

R = a2(10+a2)/30~2. (73) 

The critical wave near, a,, and the corr~pond~ng 
Rayleigh number, that is; critical Rayleigh number, 12, 
were found numerically 

critical wave number, a, = 3.122, 

critical Rayleigh number, R, = 1748.696. 

These values are remarkably close to the exact values 
3.117 and 1708 obtained by Chandrasekhar [9]. 

(ii) Force representation 
In the force representation the principle is varied 

with respect to the the~~ynami~lfor~s only. There- 
fore, in this case the terms which are due to the thermo- 
dynamical currents have no contribution and the 
principle (72) takes the simpler form 

RAB v3 4 a2 4 
X--po~ 105+&g 140 ( > 

xA2 
II 

= 0. (74) 

In the above principle the underlined parameters are 
the cont~butions due to currents and we do not vary 
with respect to these quantities. Thus varying the 

principle (74) with respect to variational parameters A 
and B, we get the following equation for the neutral 
stability curve 

R=(1W2 ;+; 
( )( 

$+&+$ . 
) 

(75) 

This expression is just similar to that found by 
Schechter [lo] by local potential method. As it has 
already been proved by Gyarmati and others [5-73 that 
local potential method is in practical respect equivalent 
to the force representation of the governing principle of 
dissipative processes, this practical problem confirms 
the theoretically proved equivalency. In this case we get 
the critical wave number, a,, and critical Rayleigh 
number, R, as 

a, = 3.117, 

R, = 1749976. 

(iii) Flux representation 
The characteristic of this representation lies in the 

fact that the governing principle of Gyarmati is varied 
with respect to the current densities, keeping the force 
terms constant. Therefore the principle reduces to 

Varying the principle (76) with respect to the variational 
parameters A and B, we get the neutral stability curve 

R = U2/( 140)2/?&. (77) 

The relation (77) was solved numerically and the critical 
wave number, a, and the corresponding Rayleigh 
number, &, ate found to be 

a, = 3.119, 

R, = 1706815. 

These values are quite in agreement with those of exact 
results [9]. 

6. CONCLUSION 

The critical wave numbers and Rayleigh numbers 
obtained with the help of the governing principle in 
universal, force and flux representations are listed in 
Table 1 with those of exact values. 

Table 1 

Exact Universal Force Flux 

Critical wave 
number, a, 3.117 3,122 3.117 3.119 

Critical Rayleigh 
number, & 1707.762 1748.696 1749.976 1706.8 15 

It is interesting to note that the values of critical 
wave numbers and critical Rayieigh numbers are 
remarkably close to the more precise results obtained 
by Chandr~ekhar [9]. In particular, the critical 
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Rayleigh number obtained by flux representation 
method differs with that of exact result by Iess than 
00.5 per cent, though the result is obtained on one 
term approximation of velocity and temperature pro- 
files. The results obtained by universal representation 
are quite satisfactory for the most of engineering 
applications. The results can be improved by consider- 
ing more terms in the Fourier series in terms of which 
the temperature and velocity perturbations can be 
expressed. 

It may be mentioned that the results found for the 
BCnard convection in universai, force and flux repre- 
sentations are in the same order as found by Stark for 
ore-dimensiona heat conduction problem [S] with the 
help of governing principle of dissipative processes. The 
flux representation gives the best approximation, while 
universal form comes next to it and force stands the 
last. It may be noted that the universal form of the 
principle is the actual variational principle and the 
results obtained on the basis of this actual form differ 
by less than 2.5 per cent with that of exact values in 
this fundamental problem of stability. Thus the applica- 
bility of the governing principle is established for the 
solution of the practical problems of hydrodynamic 
stability. 
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for his interest in the preparation of this paper. My thanks 
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APPLICATION DES LOIS FONDAMENTALES DES PROCESSUS DISSIPATIFS 
A LA CONVECTION DE BENARD 

R&sume&L’article traite de I’application des lois fondamentales des processus dissipatifs b la convection 
de Bknard, c’est B dire au mouvement provoquB par l’instabilit& thermique d’une mince couche horizontale 
de fluide soumise j une diffkrence de tempbrature constante. Les Equations lintaris&es de la convection 
de Bknard sont obtenues a l’aide de la forme universelle des lois fondamentales. On a utilisk la mkthode 
dite du champ dual d&elopp&e sur la base des lois fondamentales des processus dissipatifs afin d’obtenir 
une solution du problkme dans chacune des trois prisentations du principe, c’est B dire respectivement 
en termes universels, de force et de flux. Les risultats obtenus B I’aide du principe variationnel lui-mime, 
c’est 5 dire par la forme universefle du principe, diffirent de moins de 2,s:; des valeurs exactes alors 
que la reprbentation en termes de ttux fournit des r&&tats mieux approchb et que la reprbentation 

en termes de force s’avhe la plus mauvaise. 

DIE ANW~NDUNG DES HERRSCHENDEN PRINZIPS DISSIPATIVER 
PROZESSE AUF DIE B~NARD-KONVEKTION 

Zusammenfassung- Die Arbeit befal3t sich mit der Anyendung des “Governing Principle of Dissipative 
Processes” (Herrschendes Prinzip dissipativer Prozesse), kurz GPDP, auf die Bknard-Konvektion, das 
heiBt aufdie Bewegung,diedurch die thermische InstabilitLt einer diinnen horizontalen Fliissigkeitsschicht 
hervorgerufen wird, wenn ein konstanter Temperaturunterschied aufgepr&gt wird. Die linearisierten 
Gleichungen der BCnard-Konvektion werden mit Hilfe der allgemeinen Form des “Governing Principle” 
(herrschenden Prinzips) gewonnen. Die sogenannte Dualfeldmethode auf der Basis von GPDP wird 
angewandt, urn die Ltisung des Problems in allen drei Darstellungen des Prinzips, das heil3t allgemein, 
beziehungsweise mit K&ten oder Fliissen zu erhalten. Es wurde gefunden, dal3 die Ergebnisse, die durch 
das Variationsprinzip, das heii3t durch die allgemeine Form des Prinzips erhalten wurde, urn weniger 
als 2,Y, von den exakten Werten abweichen, wghrend die Darstellung mit Fliissen die besten 

Ndherungsergebnisse und die mit Krgften die schlechtesten Resultate liefern. 

nF~MEHEH~E OCHOBHOf-0 A~CC~nAT~B~OrO nP~ff~I~nA 
K KOHBEK4~~ E;EHAPA 

AiifioTauHR - B cTaTbe paccr4aTptisaeTca np~MeHeH~e ocHomior0 np3intuana fiRCCHnaTRBHbzx npo- 
UeCCoB K KOHBeKUIIA 6eHapa, T. e. ABIIH(eHRK), B03HHKaK)lLieMy N3-la KOHBeKTRBROli HeyCTOtiseBOcTH 
TOHKOTO TOpA30HTaJIbHOrO CnOR )KkiAKOCTN “pH Hafl114m.l llOilepeK CJIOR ~OCTORHHO~? pa3HocTU 
TeMflepaTyp. flHHeapM30BaHHbIe ypaBHeHlls KOHBeKTIlBHOrO aBAmeHMR &Hapa BblBOfl,TTcn c “o- 
MOUIbIO OCHOBHOrO IIpriHUfina B er0 ,‘HHBepCanbHOM BHqe. &I% pelLleHM$l 3anaVH Hcnonb3yeTcR TaK 
Ha3bIBaeMbIil n6yXnOJleBO& MeTO& pa3pa60TaHHbI8 Ha OCHOBe yKa3aHHOrO npaenwna. npHHUMn 
MCIIOJIb3yeTCR B TpeX +OpMaX: B )‘HHBt?pCanbHOM BH&e, &‘lSl CHJI H AJIR ,,“ToKOB. 

Haiinerfo, ‘IT0 pe3yJIbTaTbI. IIOJQ’WHHbK C IIOMOUIbKJ MCTHHHOrO BapHaUMOHHOrO “p&iH”e”a, 
7. e. c IIOMOl4bW EIpHHUkmi B er0 yHHB‘2pCUIbHOM BWe, npllMepH0 Ha 23% OTnllVa,OTCfl OT TOYHblX 
3HareHHB. Haenysuree npa6nnXeriee nocTmaeTCR np~ m%onb3oBaHj+ti npmiunna ~JUI IIOTOKOB, 

a TO BpeMs KaK npff NCIIOnb30BaHNN npaHuArra nnn cun npu6nHxeHHe CaMOe nnoxoe. 


